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Computer programming was and, in many cases, still is an art rather than a science. Programs are often 
written without the benefit of any design theory, analysis techniques, or awareness of what others in the 
field have done. Recently, however, a systematic body of knowledge concerning the design, analysis, and 
implementation of computer algorithms has begun to emerge. This paper highlights some current develop- 
ments in this field and shows how proper design techniques can lead to order-of-magnitude improvements 
in program performance. 

Introduction 
As computers are used to attack larger and larger 
problems, it becomes more and more important to 
understand how the time and space complexity of the 
algorithm underlying a computer program affects the 
size of problem that can be solved by that program. 
The improvement in program performance achieved 
by replacing an inefficient algorithm by one of smaller 
time complexity is often much more spectacular than 
that achievable just by speeding up the hardware or 
by rewriting the program in another language. 

In this article we discuss recent developments in the 
algorithm design area which should be of general 
interest to all computer users. We present some general 
techniques that can be used to design efficient computer 
algorithms for many problems. We also present some 
new theoretical results which suggest that certain 
classes of frequently encountered combinatorial and 
optimization problems can require substantial amounts 
of computation time, regardless of what algorithm is 
used. These latter results are useful in that they can 
direct attention to alternative approaches whose 
computational requirements are less severe. 

Computational complexity 
Much of the current interest in algorithms is focused on 
computational complexity. The basic question asked 
in complexity theory is: 'How much time and space is 
required to solve a problem of a given size?' 

In theory, the size of a problem is the number of bits 
of input, with all numbers in binary notation. In 
practice, several other measures are also used. For 
example, a convenient measure of size in a sorting 
problem is the number of items to be sorted, in a trans- 
form problem the number of points to be transformed, 
and in a matrix-inversion problem the dimension of the 
matrix. 

Time is measured in terms of the number of com- 
putational steps made in processing an input of size n. 
A computational step is defined as one primitive opera- 
tion that can be executed with a fixed amount of effort 
on a computer model such as a Turing machine or a 

random-access machine.* For our purposes here we 
can take as a single computational step any operation 
that can be performed in one instruction on a com- 
puter, such as any Boolean operation on two bits, or 
any arithmetic operation on two integers (provided a 
fixed bound can be imposed in advance on the size of 
all integers used). 

We define the worst-case time complexity of an 
algorithm to be the maximum number of computa- 
tional steps required to solve any problem of size n, 
expressed as a function of n. The expected time com- 
plexity is the average number of computational steps, 
taken over all inputs of size n. Obviously, an algorithm 
with the best worst-case behavior need not have the 
best expected behavior. Unfortunately, the expected 
time complexity of an algorithm is often much more 
difficult to determine, primarily because of the difficulty 
of coping mathematically with the probability distribu- 
tions of problems that arise in practice. 

When we say an algorithm is of r/2 time complexity, 
the actual running time of any program implementing 
that algorithm will be bounded from above by cn 2 for 
some positive constant c for inputs of size n. Although 
the constant of proportionality determines the precise 
running time of a program on a given computer, in this 
paper we shall leave all constant factors undetermined. 
There are several reasons for doing this. 

First, there is so much hardware variation from one 
machine to another that a precise value for a constant 
factor would be meaningful only in a rather limited 
environment. Second, and more important, it is the 
functional rate of growth of the complexity rather than 
the constant factor which is of prime importance in 
comparing two algorithms. For example, if we have 
two algorithms, one of time complexity f(n), the other 
of time complexity g(n), and f (n) grows functionally 
faster than g(n),t then there always exists a threshold 

* See Aho, Hopcroft & Ullman (1974) for definitions and 
references omitted from this paper, and for a general introduction 
to the subject of computational complexity. 

t This means that there is no constant c such thatf(n)<cg(n) for 
sufficiently large n. For example, n log n is functionally greater than 
n but n + log n is not. 
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value no of n for which the g(n) algorithm will be faster. 
When the problem size exceeds this threshold value, 
the g(n) algorithm will outperform the f (n)  algorithm. 

The importance of computational complexity 

The practical importance of computational complexity 
is captured by the following somewhat whimsical 
example. Two card players A and B play a game in 
which they need to sort a hand of n cards. Player A 
sorts his hand in n passes, in each pass removing the 
largest card and placing it on a pile in front of him 
(presumably face down). In the ith pass he scans 
n -  i + 1 cards, so in sorting his hand he handles a total 

of ~ ( n - i +  1)=n(n+ 1)/2 cards. 
i = 1  

Player B sorts his hand with a 'radix' sort. He makes 
two passes over his hand. In the first pass he examines 
each card and places it in one of thirteen piles 
depending on its rank (i.e. whether it is an ace, or a king 
etc.). He then stacks the thirteen piles together, placing 
one pile on top of the next. In the second pass he places 
each card in one of four piles depending on its suit 
(i.e. whether it is a spade, a heart etc.). After stacking 
these four piles together, his hand is sorted. We see that 
player B sorts his hand handling 2n cards in all. 

Suppose A and B are expert players - each can 
handle one card in one millisecond. When they are 
playing with a small number of cards, they can sort 
their hands in a flash with either algorithm. However, 
suppose player B (slyly) suggests, 'Let's play two more 
games, the first with a thousand cards, the second with 
a million.' Table 1 shows why player A should not 
accept this invitation. 

Table 1. Time to sort a hand 
Number of cards 
10 a 10 6 

A 9 min 16 years 
B 2 s 34 min 

Player A obviously needs to reduce the amount of 
time needed to sort a hand of one million cards. He 
could obtain a faster sorting machine or he could 
rewrite his current program in another language. But 
even if he obtained a machine 1000 times faster than 
his current one or even if the rewritten program pro- 
duced a 1000-fold speedup, he would still take 6 days to 
sort a hand of one million cards. 

On the other hand, if he merely replaced his quadra- 
tic algorithm with player B's linear algorithm, he could 
sort one million cards in 34 minutes instead of 16 years.* 
This example illustrates how important it is, with large 
amounts of data, to use an algorithm whose time 
complexity grows as slowly as possible. 

* If there are only 52 different card values, player A can do even 
better by using a single pass and 52 piles. 

With small amounts of data, however, the constant 
of proportionality of the time complexity can be more 
important than the growth rate itself. For example, 
suppose we have two algorithms, one whose time com- 
plexity is 100n, the other 10n 2. Then for all values of n 
less than 10, the quadratic algorithm would outper- 
form the linear. For inputs of size greater than 10 the 
linear algorithm becomes the method of choice, and 
for not-too-large values of n the quadratic algorithm 
becomes infeasible to use, even on the fastest of 
machines. 

Algorithm design techniques 

It is theoretically impossible to give a general method 
to find the best algorithm for a given problem, but 
certain systematic approaches to algorithm design 
yield good results for large classes of problems. We 
shall mention a few of the more generally applicable 
algorithm design techniques here. 

Divide-and-conquer 
Most important, perhaps, is the technique known as 

'divide-and-conquer'. Its origins go back to antiquity, 
but even today it can be used to produce unexpectedly 
efficient algorithms. In the divide-and-conquer ap- 
proach, we attempt to solve a given problem by parti- 
tioning it into a small set of smaller subproblems whose 
solutions can be combined to yield a solution to the 
original problem. 

If the same technique is applied recursively to each 
subproblem, we can easily determine the asymptotic 
time complexity of the entire algorithm. For example, 
suppose a problem of size n is partitioned into a sub- 
problems each of size n/b. Then t(n), the time com- 
plexity of the algorithm for a problem of size n, can be 
expressed in terms of the recurrence 

k for n = l  
t(n) = at(n/b) + cn for n > 1 (1) 

where a, b, c and k are positive constants. Equation (1) 
assumes it takes cn computational steps to combine 
the a subproblems of size n/b into a solution to the 
original problem. Except for multiplicative factors, the 
solution to equation (1) grows as 

n if a < b  
t(n) ~ n log 2 n if a = b (2) 

nlOgba if a > b .  

To illustrate the divide-and-conquer technique, let 
us apply it to sorting, a task in which much computer 
time is spent. Suppose we sort a sequence of n items by 
splitting the sequence in the middle, recursively sorting 
each half by the same method, and then merging the 
sorted halves. The recurrence governing the time 
complexity of this process is 

1 for n=  1 (3) 
t (n)= 2t(n/2)+n for n > l  
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assuming it takes n computational steps to merge two 
sorted sequences of length n/2. For n a power of two, 
the solution to equation (3) is 

t(n) = n log2 n + n. (4) 

This 'merge sort' is vastly superior to any n 2 algorithm 
for large sorting problems. 

The principle of balance is often useful in the context 
of divide-and-conquer. Consider the following 'ex- 
change' algorithm to sort a sequence of n numbers. We 
find the largest number, exchange it with the last 
number in the sequence, and then recursively sort the 
first n - 1 numbers using the same procedure. Assuming 
it takes n computational steps to find the largest of n 
numbers, the time complexity of exchange sort grows 
quadratically, which as we have seen, is a bad growth 
rate for a sorting algorithm. 

The exchange sort partitions a problem of size n 
into two smaller subproblems, one of size n - 1 ,  the 
other of size 1. The merge sort, on the other hand, uses 
the principle of balance: it partitions a problem of size 
n into two subproblems each of size n/2. For large 
values of n, the performance of the merge sort is 
superior to that of the exchange sort. 

Binary search is another familiar example of balance 
and divide-and-conquer. Consider the problem of 
finding a word in a dictionary of length n. If the dic- 
tionary is unordered, then on the average we would 
have to scan n/2 words to find the given word. If the 
dictionary is sorted, however, then by using binary 
search we can always find a given word in log2 n time 
as follows. We open the dictionary in the middle. If the 
word is there, we halt. Otherwise, we determine 
whether the given word is before or after the word in 
the middle of the dictionary, and recursively apply the 
same process to the appropriate half of the dictionary. 

It is rather surprising that unexpected results can be 
produced by using as simple a method as divide-and- 
conquer. For example, divide-and-conquer yields an 
order n 2"81 algorithm to multiply two n x n matrices 
and an order n algorithm to find the median of n 
numbers. 

Dynamic programming 
A useful generalization of divide-and-conquer for 

optimization problems is a method called dynamic 
programming. Here we attempt to find an optimal 
solution for a problem by finding optimal solutions 
for a collection of smaller subproblems. In many 
situations an efficient algorithm can be obtained by 
systematically constructing a table of solutions to all 
subproblems, starting with the smallest subproblems. 

A simple example should illustrate the method. 
Suppose we need to multiply together n matrices 
Mtx  M 2 x . . .  X M. where matrix Mi has r~-a rows 
and ri columns for 1_<iN n. 

The order in which the matrices are multiplied 
together can dramatically affect the total number of 
scalar operations (the 'cost'). For example, suppose we 

need to multiply together three matrices M 1, U 2 ,  and 
M3 in which M1 is 100x 1, ME is 1 x 100 and M3 is 
100 x 100. If we evaluate ( M1 x ME) x M3 in the normal 
fashion, we require 100 x 1 x 100+ 100 x 100 x 100= 
1"01 x 106 operations. If we evaluate M1 x ( M2 x M3), 
we require only 1 x 100 x 100+ 100 x 1 x 100=20000 
operations. 

There are 1C: ) 
C(n + 1)= ~ ~- n3/2 

possible orders in which to multiply a sequence of n + 1 
matrices. [C(n) is the number of different ways in which 
a sequence of n items can be fully parenthesized. These 
numbers are called the Catalan numbers.] Thus trying 
all possible orderings to find the one with minimum 
cost is an exponential process. Dynamic programming, 
however, provides a n  n 3 method as follows. 

Let m u be the minimum number of operations needed 
to evaluate Mix M i + I  x . . .  X Mj for l < i < j < n .  We 
have 

0, if i= j  
mij = min (mik -~- mk + 1, j "[- ri- 1 rkr)), if j > i. 

i<_k<j 

(5) 

Equation (5) finds the optimal way to evaluate 
Mix Mi+t x ... x Mj by considering the costs of the 

j - i  possible products (Mix M i + l x . . . x  Mk) X 
( M k +  l X Mk+ 2 X ... X Mj) .  

The dynamic programming approach evaluates the 
miss in order of increasing values of j - i .  We first 
compute m. for all i, then m~, i + 1, then m~, i + z and so on 
until we determine ml., the optimal cost for the n-fold 
product. Choosing this order of evaluation makes sure 
the terms mik and mk+ 1, j are available when we evaluate 
m u using equation (5). The optimal order to evaluate 
the matrices can be determined by tracing backward 
from ml. the values of k used in equation (5). 

Data structures 
One vitally important aspect of algorithm design is 

the manner in which data is represented inside the 
computer. The structures holding the data should 
permit efficient access to elements when they are 
needed. They should also permit easy insertion and 
deletion of values when needed. Occasionally these 
two requirements conflict in that a structure that per- 
mits fast access may not permit fast modification. For 
example, it is easy to find an element in a sorted list, 
but it is not nearly as easy to add a new element. The 
principle of balance is often useful in the design of data 
structures. 

Regardless of his specialty, every algorithm designer 
ought to be familiar with fundamental data structures 
such as arrays, queues, stacks, and lists (both linear 
and linked). Hashing and binary trees are important 
techniques for storing and retrieving data. Basic 
techniques for representing trees and graphs should 
also be part of the designer's repertoire. (For details 
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see Knuth, 1968, 1973; Aho, Hopcroft & Ullman, 
1974.) 

Sparse techniques 
Space is often more precious in computing than time. 

Today a computation requiring a billion computer 
operations, even floating-point multiplications, is 
possible but one requiring a billion words of memory 
is not. For this reason, efficient representations for 
'sparse' data are a subject of current research. To 
illustrate one approach towards sparse data let us 
consider some representations for the undirected 
graph G in Fig. 1. 

One representation for G is the binary adjacency 
matrix in Table 2 whose ijth element is 1 if, and only if, 
there is an edge from vertex i to vertexj. The adjacency 
matrix permits easy access to and modification of 
values but it always requires order n 2 space for an 
n-vertex graph. 

• ¢ - .  ~ 

Table 2. Adjacency matrix 
1 2 3 4 5 6 

1 0 1 1 1 1 1 
2 1 0 1 1 0 0 
3 1 ! 0 0 0 0 
4 1 1 0 0 0 0 
5- 1 " 0  0 0 0 1 
6 1 0 0 0 1 0 

For large values of n, the adjacency matrix repre- 
sentation becomes very space consuming. If we take 
advantage of its symmetry, we can reduce the space 
requirements by one-half. On the other hand, if the 
graph is sparse (i.e. the number of edges is order n 
rather than n2),  then adjacency lists provide a much 
more economical representation. Here we store in a 
linked list for each vertex i only those vertices j such 
that there is an edge between i and j as in Table 3. The 
adjacency-lists representation requires order n, rather 
than n z, space for a sparse graph. 

Table 3. A~acency lists 
Vertex Vertex 

1 2 , 3 , 4 , 5 , 6  4 1,2 
2 1 ,3 ,4  5 1,6 
3 1,2 6 1,5 

Depth first search 
At the heart of several important algorithms dealing 

with graphs is a simple efficient technique, called depth 
first search, for systematically visiting the vertices and 
edges of a graph G. A depth first search begins at some 
vertex v. We then select an untraversed edge (v,w) 
incident upon v. If w has not yet been visited, we move 
to w and recursively continue the search at w. After 
exhausting all edges incident upon w, we return to v 
and recursively search the remaining untraversed edges 
incident upon v. Fig. 2 shows a depth first search of the 
graph of Fig. 1, beginning at vertex 1. 

The depth first search partitions the edges of G into 

two sets. The edges by which the vertices (the solid 
edges in Fig. 2) are reached for the first time are called 
tree edges because they form a spanning tree of G. The 
remaining (dashed) edges link descendants to ancestors 
and are called back edges. These tree and back edges 
have important mathematical properties which are 
useful in a number of fundamental graph algorithms, 
particularly those dealing with connectivity. For 
example, every cycle in the graph contains at least one 
back edge. 

Depth first search and adjacency lists have been used 
to solve a variety of graph problems efficiently. One 
notable application is an order n algorithm to deter- 
mine whether an n-node graph is planar (Hopcroft & 
Tarjan, 1974). For many years the best known algo- 
rithm for this problem had been of time complexity n 3. 

Unification of techniques 

One of the important benefits of algorithm study is the 
identification of classes of problems that can be solved 
with essentially the same algorithmic techniques. 
Consider, for example, the close relationship between 
polynomial evaluation and the Fast Fourier Trans- 
form. 

Polynomial evaluation 
An n -  1st degree polynomial 

n - 1  
p(x) = ~ aix i 

i=0  

can be evaluated at n points Co, Cl,...,C,-a with n z 
scalar operations using Horner's rule n times.* On the 
other hand, consider what happens when we apply 
divide-and-conquer to this problem. For simplicity, 
take n to be a power of two. Observe that p(c) is 
p(x) mod ( x -c ) ,  i.e. the remainder of p(x) divided by 
x - c .  Thus we can evaluate p(x) at Co, C1,...,c,-1 by 
dividing p(x) by X-Co, X - C l , . . . , x - c , _ a  and deter- 
mining the remainders. 

* Horner 's  rule evaluates p(x) as 

{(...[(a,_ lx +a,-2)x +a,-a]x + ...)x +al}x +ao. 

Fig. 1. Undirected graph G. 

Fig. 2. Depth first search of G. 
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Using a divide-and-conquer approach, we first 
compute the products 

and 
p l (X)=(X- -Co)  (X - -C l ) ' " (X- -Cn /2 -  1) (6) 

p2(X)=(X--C. /2)  (X--C./2 + 1). . . (X--C n - 1)- (7) 
We now compute rl(x)=p(x) mod pl(x) and r2(x)= 
p(x) mod p2(x).  The original problem has now been 
transformed into two subproblems, each evaluating 
an (n-1) /2  degree polynomial at n/2 points: rl(x) at 
Co, CI,'" ",Cn/2- 1 and r2(x ) at Cn/2, Cn/2 + 1," " , C n -  1" 

When we apply the procedure recursively to the 
subproblems, the overall time complexity of the pro- 
cess is determined by the recurrence 

k for n=  1 
t(n) = 2t(n/2) + d(n) for n > 1 (8) 

where k is a constant and d(n) is the time required to 
divide two n - 1 s t  degree polynomials. The solution 
to equation (8) is bounded from above by d(n)log n. 
Since polynomial division can be done in order 
n logn scalar operations, evaluation of an n - 1 s t  
degree polynomial at n points can be performed in 
order n log 2 n scalar operations. 

This approach to polynomial evaluation can also be 
used to develop efficient algorithms for a number of 
other problems such as polynomial interpolation, 
integer multiplication, and Fourier transform evalua- 
tion. 

The Fast Fourier Transform 
The discrete Fourier transform on n points 

ao, al , . . . ,a , -1  is the sequence of values bo,bl , . . . ,b,-1 
where 

n-1  
bj = 2 ak~Jk 

k=O 

and co is a principal nth root of unity (e.g. e 2ni/n where 
i = ] / / -  1). We see that computing the discrete Fourier 
transform is equivalent to evaluating the polynomial 

n-1  
p(x) = ~ aix i 

i=0 

at the roots of unity co°,e) 1, ...,co"-1 
If we use the polynomial evaluation scheme given 

above, we immediately have a Fourier transform 
algorithm that takes n logZn scalar operations. If we 
notice that oJ"/2=- 1, however, we can do more. We 
can rearrange the order in which the output values are 
to be produced to obtain product polynomials (6) and 
(7) that have no cross product terms, i.e. they are all of 
the form X2~--O) 2t for some integers s and t.* The 

advantage of this is that a division by a polynomial of 
this form can be done in order n time, so in equation 
(8) d(n)= cn for some constant c. The solution to equa- 
tion (8) then becomes order n log2 n. These ideas form 
the basis of the celebrated Fast Fourier Transform 
(Cooley & Tukey, 1965). Couching these ideas in these 
terms shows that the same underlying concepts can be 
applied to a large number of related problems. 

Reducibility 
The notion of reducibility carries the concept of algo- 
rithm unification further. A problem Px is said to be 
linearly reducible to a problem P2 if an algorithm for 
P1 can be constructed out of one for P2 such that the 
time to perform the reduction and solve P1 is linearly 
related to the time to solve P2. An analogous defini- 
tion holds for polynomial time reducibility. 

For example, matrix multiplication and matrix 
inversion are linearly reducible to each other. Similarly, 
n x n Boolean matrix multiplication, computing the 
transitive closure of an n-vertex directed graph, and 
computing the transitive reduction of an n-vertex 
directed graph are all linearly reducible to one another~ 

Reducibility is important because it allows results 
for one problem to be transferred to all problems that 
are reducible to it. Any improvements to one algorithm 
would impart improvements to algorithms solving 
other problems in the same class. Polynomial time 
reducibility is particularly important both mathe- 
matically and computationally. To appreciate the full 
significance of polynomial time reducibility we need to 
become acquainted with 'nondeterministic computers' 
and 'NP-complete problems'. We use the satisfiability 
problem from logic to introduce these two concepts. 

The satisfiability problem 
Suppose we are given a Boolean expression E having 

logical variables, a, b, c,... and we are asked, 'Is there an 
assignment of the logical variables true and false to the 
variables that makes E true?' This problem is called 
the 'satisfiability problem.' One way to solve this prob- 
lem is to systematically generate all possible assign- 
ments of logical values to the variables of E and 
evaluate E on each. 

We can visualize this process as one of generating a 
solution tree as shown in Fig. 3. From the root of the 
tree emanate two branches corresponding to the two 
possible values of variable a. Similarly, from each of the 
two descendants of the root emanate two branches 
corresponding to the two possible values of variable b, 
and so on. Once we have generated a complete assign- 
ment, we evaluate E with that assignment. This 

* Choosing cj=brevtj) gives the desired result, where if 

[dk- l dk-2...do] is the binary representation for j i.e. j = i di2i ' 

rev(j) is the integer whose binary representation is [dodl ...dk-1]. 

i G*, the transitive closure of directed graph G, is a graph with the 
same vertices as G and with an edge from vertex i to vertex i if, and 
only if, G has a path from i toj.  G R, the wansitive reduction of G, is a 
directed graph with the same vertices as G and with the fewest 
number of edges of any graph having the same transitive closure as G. 
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evaluation is represented by the path leading up to 
each leaf. 

We designate those leaves at which it is discovered 
E is true 'accepting'. Thus determining whether E is 
satisfiable is equivalent to determining whether the 
solution tree has at least one accepting leaf. 

One way to determine whether the tree has an 
accepting leaf is to systematically visit each node of this 
tree using backtrack programming. Such an approach, 
however, can be quite time consuming. We can evaluate 
E on any assignment using a number of computational 
steps linearly proportional to the length of E. Thus the 
length of the path from the root to a leaf is a linear 
function of the length of E. The number of leaves, 
however, grows as 2", where n is the number of variables 
in E. This growth rate is so explosive that with n as 
low as 50, backtrack programming is hopeless, even on 
a machine that can visit one vertex per nanosecond. 

Nondeterministic computers 
To study problems such as satisfiability, computer 

scientists employ a fictional machine called a 'non- 
deterministic' computer. In addition to being able to 
perform the usual primitive operations of an ordinary 
(or 'deterministic') computer, a nondeterministic com- 
puter has the remarkable capability of being able to 
split itself, in one step, into several identical copies. 
Furthermore, each copy has the ability to replicate 
itself in a similar manner. 

We can determine whether there is a solution to the 
satisfiability problem with a nondeterministic com- 
puter as follows. The nondeterministic computer starts 
off at the root of the solution tree. In one step it re- 
plicates itself in two, creating one copy to handle the 
case a--true, the other to handle a =false. 

In the next step each copy splits in two, one copy 
handling b=true, the other b=false. The copies 
continue operating this way, tracing out the solution 
tree in parallel, creating new copies to handle each two- 
way branch. If any copy reaches an accepting leaf, then 
we know there is a solution to the satisfiability problem. 

The time taken by this machine is defined to be the 

c = l  ~ ~ -  

c = - : ~- 

b = l  

a =  0 ~. 7. --' 

c = l  - ~. - 

c = u  & -_ - 

Fig. 3. Solution tree. 

length of a shortest path from the root to an accepting 
leaf. We see that such a path is of length linear in the 
size of E, so that the nondeterministic computer can 
determine whether there is a solution to the satisfiability 
problem in time linear in the size of E. 

We emphasize that a nondeterministic computer is 
a mathematical abstraction. No real parallel computer 
model discussed in the literature is capable of coping 
with the exponential growth needed to implement a 
nondeterministic computer. The only known way to 
implement a nondeterministic machine on a real 
computer is by simulation. This is essentially what 
backtrack programming does. 

The classes P and NP 
Why study nondeterministic computers ? The answer 

lies in the unity they bring to a large class of important 
but seemingly disparate problems that arise in many 
fields of science, engineering and mathematics. 

We use NP to denote the class of problems that can 
be solved on a nondeterministic computer in time 
polynomial in the size of the problem. (Size here is the 
number of bits, with numbers in binary notation.) We 
use P to denote the class of problems that can be 
solved in polynomial time on a real (deterministic) 
computer. Obviously P is a subset of NP, since a real 
computer is a special case of a nondeterministic one. 
No one, however, has yet been able to prove whether 
P= NP or whether P is a proper subset of NP. The 
answer to this question, as we shall see, would have 
major implications for the theory of computing. 

Certain problems in NP are as hard as any in P. We 
call these problems 'NP-complete'. Formally, a prob- 
lem is NP-complete if it is in NP and every other prob- 
lem in NP can be polynomially reduced to it. 

Cook (1971) was the first to show that NP-complete 
problems exist; in particular, he showed that the 
satisfiability problem is NP-complete. Shortly there- 
after, Karp (1972), and later many others, showed that 
a large number of important and commonly occurring 
problems are also NP-complete. These problems arise 
in a variety of disciplines: vehicle routing, airplane 
loading, job-shop scheduling, chemical-compound 
recognition, optimizing compilers, integer linear pro- 
gramming, and many others. 

Here are five well-known examples of NP-complete 
problems. (1) Traveling salesman. Given n cities and an 
integer k, is there a circuit that passes through each city 
once having a total length less than k? (2) Subgraph 
isomorphism. Given two graphs G1 and G2, is G1 iso- 
morphic to a subgraph of G2 ? (3) Partition. Given a set 
of integers, is there a way of partitioning the set into two 
subsets whose sums are equal ? (4) Graph coloring. Given 
a graph G and an integer k, can the vertices of G be 
colored with k colors so that no two adjacent vertices 
(i.e. vertices connected by an edge) have the same 
color. (5) Clique. Given a graph G and an integer k, 
does G contain a k-clique (a complete subgraph on k 
vertices)? 
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Implications of NP-completeness 
All NP-complete problems are polynomially reduc- 

ible to one another. Thus, to show a problem is NP- 
complete all we need to do is show that it is in NP and 
that a known NP-complete problem is polynomially 
reducible to it. 

The implication of knowing a problem is NP- 
complete is that if a polynomial time-bounded algo- 
rithm (on a real computer) existed for that problem, 
then there would be a polynomial algorithm for every 
NP-complete problem. Although many researchers in 
a number of different fields have independently studied 
a variety of NP-complete problems, to date no one has 
found a polynomial algorithm for any NP-complete 
problem. As a consequence it is generally felt that there 
are no polynomial algorithms for NP-complete prob- 
lems, although no one has yet been able to prove this to 
be the case. The question of whether there exists a 
polynomial algorithm for any NP-complete problem 
has become known as the ' P = N P  problem'* and is 
considered the major unsolved question in theory of 
computational complexity. 

The practical consequences of discovering a problem 
to be NP-complete have not been fully resolved at 
present. If indeed P 4 = NP, no general algorithm can be 
given which will solve all instances of that problem in 
less than exponential time. Nevertheless, it may be 
possible that for the distribution of the instances of the 
problem encountered in a given application, an algo- 
rithm whose expected time complexity is less than 
exponential can be found. However, the expected time 
complexity of NP-complete problems is an area of 
active interest that is not yet well understood. 

Another possibility is that in practice we may have a 
restricted form of an NP-complete problem. Here we 
might be able to find an algorithm whose worst-case 
behavior is less than exponential. Unfortunately, this 
approach may not always be successful because even 
rather restricted forms of some NP-complete problems 
are also NP-complete. For example, the satisfiability 
problem is NP-complete even if we restrict our atten- 
tion to Boolean expressions in product-of-sums form 
with at most three variables per sum [i.e. to expressions 
of the form (a + b + c) (2 + c + d) .... Here, concatenation 
denotes logical 'and', + logical 'or' and - comple- 
mentation.] The colorability problem is NP-complete 
even if the graph is planar and has vertices of degree at 
most 4. 

One approach to solving an NP-complete problem 
is to find an algorithm whose exponential growth is 
confined to some parameter of the problem whose 
size is small in a given application. For example, 
generation of an optimal compiler code for expressions 
with common subexpressions is NP-complete even for 
one-register computers. However, there is an algorithm 

* If there exists a polynomial time algorithm for one NP-complete 
problem X, then every problem in NP could be solved in polynomial 
time by polynomially reducing every problem to X. Hence, P would 
equal NP. 

to generate an optimal code on a one register computer 
whose time complexity is order n2 c where n is the size 
of the expressions and c is the number of common 
subexpressions (Aho, Johnson & Ullman, 1977). In 
typical expressions the number of common subexpres- 
sions is small so this may be a reasonable way to 
proceed. 

Another approach to solving an NP-complete prob- 
lem is to use a heuristic technique that gives a good but 
not necessarily exact solution. [See, for example, the 
work of Lin & Kernighan (1973) on the traveling- 
salesman problem.] For certain classes of problems 
performance guarantees can be placed on heuristic 
solutions. For example, consider the problem of 'bin- 
packing', storing a finite sequence of real numbers 
between 0 and 1 into the fewest possible number of 
unit-capacity bins. It has been shown that the heuristic 
of sorting the sequence into decreasing order and then 
packing the bins in a first-fit fashion yields a solution 
that is never worse than 11/9 optimal (Johnson, 
Demers, Ullman, Garey & Graham, 1974). 

Unfortunately, some NP-complete problems seem 
resistant even to heuristic solutions. It has been shown, 
for example, that if there were a polynomial time- 
bounded heuristic that always came within a factor of 
two of determining the chromatic number of a graph,* 
then P = NP (Garey & Johnson, 1976). Thus it is doubt- 
ful that even a good heuristic can be found for graph 
coloring. 

In some cases two seemingly similar problems may 
have rather dissimilar time complexities. For example, 
the minimal equivalent of a directed graph G is a 
smallest subgraph of G that contains the same path 
information as G.t The transitive reduction of G is a 
smallest graph (not necessarily a subgraph of G) that 
has the same path information as G. Finding a minimal 
equivalent subgraph of G is NP-complete (Sahni, 1974). 
Finding a transitive reduction can be done in less than 
n 3 time. This remark shows how important the precise 
statement of the problem can be in certain cases. 

Intractable problems 
It is suspected, but not certain, that every NP- 

complete problem requires exponential time in the 
worst case. There are certain classes of problems for 
which this is provably the case. Typical of these results 
is the doubly exponential time complexity of any 
decision procedure for Presburger arithmetic, a partic- 
ularly simple system of logic involving only addition 
and equality. Let s be a first-order predicate calculus 
statement using the symbols + and =.  For example, s 
might be V x :1 y (x +y=y) .  There is a theorem that 
states that there is a positive constant c and an integer 
no such that for every algorithm to decide whether a 
first-order statement about Presburger arithmetic is 

* The chromatic number is the least k such that the graph is 
k-colorable. 

t If G' is a minimal equivalent subgraph, then there is a path from 
vertex i to vertex j in G' if, and only if, there is a path from i t o j  in G. 
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true, and for every n > no, there is a statement of length 
n on which the algorithm takes more than 22c" time 
(Fischer & Rabin, 1974). 

This result, and others like it, show that there are 
theorems whose proofs (in formal sense) are so long 
that they cannot be found or written down with any 
reasonable amount of effort. The scope of automatic 
theorem proving becomes much less ambitious in the 
light of these results. Exactly which theorems have 
proofs of reasonable length, however, is still a subject of 
investigation. 

Most discouraging are the results that show that 
certain problems have no algorithms whatsoever to 
solve them. Perhaps the most famous of these 'un- 
decidable' problems is the halting problem for Turing 
machines which, recast in the context of programming, 
reads as follows. There is no general algorithm which, 
given any program P and any input x, can always 
determine whether P halts on input x. This result 
becomes even more remarkable when we realize it was 
proved by Turing (1936) a decade before the first 
electronic computers were built. 

The existence of intractable and unsolvable problems 
indicates that there are fundamental limits as to which 
problems can be solved by computers. 

Conclusions 

This article has discussed various aspects of algorithms 
and computational complexity. We have seen that the 
time complexity of an algorithm determines the 
ultimate size of problems that can be solved with it. 
We have discussed some general techniques that can 
be used to try to design efficient algorithms for a given 
problem. We have shown that there exist classes of 
problems for which all attempts at finding general 
efficient algorithms must fail. 

The moral of this paper is, before writing a pro- 
gram to solve a problem, examine the computational 

complexity of the underlying algorithm. If the program 
uses an algorithm whose time complexity matches the 
inherent complexity of the problem, then fruitless 
searching for nonexistent better algorithms can be 
avoided. On the other hand, if the program uses an 
algorithm whose time complexity is functionally 
greater than is required, then order-of-magnitude 
improvements in program performance can be achieved 
by substituting the proper algorithm. 
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