
Acta Cryst. (1977). 33, 5-12

Algorithms and Computational Complexity

BY ALFRED V. AHO

Bell Laboratories, Murray Hill, New Jersey 07974, USA

(Received 29 March 1976; accepted 23 July 1976)

Computer programming was and, in many cases, still is an art rather than a science. Programs are often
written without the benefit of any design theory, analysis techniques, or awareness of what others in the
field have done. Recently, however, a systematic body of knowledge concerning the design, analysis, and
implementation of computer algorithms has begun to emerge. This paper highlights some current develop-
ments in this field and shows how proper design techniques can lead to order-of-magnitude improvements
in program performance.

Introduction
As computers are used to attack larger and larger
problems, it becomes more and more important to
understand how the time and space complexity of the
algorithm underlying a computer program affects the
size of problem that can be solved by that program.
The improvement in program performance achieved
by replacing an inefficient algorithm by one of smaller
time complexity is often much more spectacular than
that achievable just by speeding up the hardware or
by rewriting the program in another language.

In this article we discuss recent developments in the
algorithm design area which should be of general
interest to all computer users. We present some general
techniques that can be used to design efficient computer
algorithms for many problems. We also present some
new theoretical results which suggest that certain
classes of frequently encountered combinatorial and
optimization problems can require substantial amounts
of computation time, regardless of what algorithm is
used. These latter results are useful in that they can
direct attention to alternative approaches whose
computational requirements are less severe.

Computational complexity
Much of the current interest in algorithms is focused on
computational complexity. The basic question asked
in complexity theory is: 'How much time and space is
required to solve a problem of a given size?'

In theory, the size of a problem is the number of bits
of input, with all numbers in binary notation. In
practice, several other measures are also used. For
example, a convenient measure of size in a sorting
problem is the number of items to be sorted, in a trans-
form problem the number of points to be transformed,
and in a matrix-inversion problem the dimension of the
matrix.

Time is measured in terms of the number of com-
putational steps made in processing an input of size n.
A computational step is defined as one primitive opera-
tion that can be executed with a fixed amount of effort
on a computer model such as a Turing machine or a

random-access machine.* For our purposes here we
can take as a single computational step any operation
that can be performed in one instruction on a com-
puter, such as any Boolean operation on two bits, or
any arithmetic operation on two integers (provided a
fixed bound can be imposed in advance on the size of
all integers used).

We define the worst-case time complexity of an
algorithm to be the maximum number of computa-
tional steps required to solve any problem of size n,
expressed as a function of n. The expected time com-
plexity is the average number of computational steps,
taken over all inputs of size n. Obviously, an algorithm
with the best worst-case behavior need not have the
best expected behavior. Unfortunately, the expected
time complexity of an algorithm is often much more
difficult to determine, primarily because of the difficulty
of coping mathematically with the probability distribu-
tions of problems that arise in practice.

When we say an algorithm is of r/2 time complexity,
the actual running time of any program implementing
that algorithm will be bounded from above by cn 2 for
some positive constant c for inputs of size n. Although
the constant of proportionality determines the precise
running time of a program on a given computer, in this
paper we shall leave all constant factors undetermined.
There are several reasons for doing this.

First, there is so much hardware variation from one
machine to another that a precise value for a constant
factor would be meaningful only in a rather limited
environment. Second, and more important, it is the
functional rate of growth of the complexity rather than
the constant factor which is of prime importance in
comparing two algorithms. For example, if we have
two algorithms, one of time complexity f(n), the other
of time complexity g(n), and f (n) grows functionally
faster than g(n),t then there always exists a threshold

* See Aho, Hopcroft & Ullman (1974) for definitions and
references omitted from this paper, and for a general introduction
to the subject of computational complexity.

t This means that there is no constant c such thatf(n)<cg(n) for
sufficiently large n. For example, n log n is functionally greater than
n but n + log n is not.

6 A L G O R I T H M S AND C O M P U T A T I O N A L COMPLEXITY

value no of n for which the g(n) algorithm will be faster.
When the problem size exceeds this threshold value,
the g(n) algorithm will outperform the f (n) algorithm.

The importance of computational complexity

The practical importance of computational complexity
is captured by the following somewhat whimsical
example. Two card players A and B play a game in
which they need to sort a hand of n cards. Player A
sorts his hand in n passes, in each pass removing the
largest card and placing it on a pile in front of him
(presumably face down). In the ith pass he scans
n - i + 1 cards, so in sorting his hand he handles a total

of ~ (n - i + 1)=n(n+ 1)/2 cards.
i = 1

Player B sorts his hand with a 'radix' sort. He makes
two passes over his hand. In the first pass he examines
each card and places it in one of thirteen piles
depending on its rank (i.e. whether it is an ace, or a king
etc.). He then stacks the thirteen piles together, placing
one pile on top of the next. In the second pass he places
each card in one of four piles depending on its suit
(i.e. whether it is a spade, a heart etc.). After stacking
these four piles together, his hand is sorted. We see that
player B sorts his hand handling 2n cards in all.

Suppose A and B are expert players - each can
handle one card in one millisecond. When they are
playing with a small number of cards, they can sort
their hands in a flash with either algorithm. However,
suppose player B (slyly) suggests, 'Let's play two more
games, the first with a thousand cards, the second with
a million.' Table 1 shows why player A should not
accept this invitation.

Table 1. Time to sort a hand
Number of cards
10 a 10 6

A 9 min 16 years
B 2 s 34 min

Player A obviously needs to reduce the amount of
time needed to sort a hand of one million cards. He
could obtain a faster sorting machine or he could
rewrite his current program in another language. But
even if he obtained a machine 1000 times faster than
his current one or even if the rewritten program pro-
duced a 1000-fold speedup, he would still take 6 days to
sort a hand of one million cards.

On the other hand, if he merely replaced his quadra-
tic algorithm with player B's linear algorithm, he could
sort one million cards in 34 minutes instead of 16 years.*
This example illustrates how important it is, with large
amounts of data, to use an algorithm whose time
complexity grows as slowly as possible.

* If there are only 52 different card values, player A can do even
better by using a single pass and 52 piles.

With small amounts of data, however, the constant
of proportionality of the time complexity can be more
important than the growth rate itself. For example,
suppose we have two algorithms, one whose time com-
plexity is 100n, the other 10n 2. Then for all values of n
less than 10, the quadratic algorithm would outper-
form the linear. For inputs of size greater than 10 the
linear algorithm becomes the method of choice, and
for not-too-large values of n the quadratic algorithm
becomes infeasible to use, even on the fastest of
machines.

Algorithm design techniques

It is theoretically impossible to give a general method
to find the best algorithm for a given problem, but
certain systematic approaches to algorithm design
yield good results for large classes of problems. We
shall mention a few of the more generally applicable
algorithm design techniques here.

Divide-and-conquer
Most important, perhaps, is the technique known as

'divide-and-conquer'. Its origins go back to antiquity,
but even today it can be used to produce unexpectedly
efficient algorithms. In the divide-and-conquer ap-
proach, we attempt to solve a given problem by parti-
tioning it into a small set of smaller subproblems whose
solutions can be combined to yield a solution to the
original problem.

If the same technique is applied recursively to each
subproblem, we can easily determine the asymptotic
time complexity of the entire algorithm. For example,
suppose a problem of size n is partitioned into a sub-
problems each of size n/b. Then t(n), the time com-
plexity of the algorithm for a problem of size n, can be
expressed in terms of the recurrence

k for n = l
t(n) = at(n/b) + cn for n > 1 (1)

where a, b, c and k are positive constants. Equation (1)
assumes it takes cn computational steps to combine
the a subproblems of size n/b into a solution to the
original problem. Except for multiplicative factors, the
solution to equation (1) grows as

n if a < b
t(n) ~ n log 2 n if a = b (2)

nlOgba if a > b .

To illustrate the divide-and-conquer technique, let
us apply it to sorting, a task in which much computer
time is spent. Suppose we sort a sequence of n items by
splitting the sequence in the middle, recursively sorting
each half by the same method, and then merging the
sorted halves. The recurrence governing the time
complexity of this process is

1 for n= 1 (3)
t (n)= 2t(n/2)+n for n > l

A L F R E D V. A H O 7

assuming it takes n computational steps to merge two
sorted sequences of length n/2. For n a power of two,
the solution to equation (3) is

t(n) = n log2 n + n. (4)

This 'merge sort' is vastly superior to any n 2 algorithm
for large sorting problems.

The principle of balance is often useful in the context
of divide-and-conquer. Consider the following 'ex-
change' algorithm to sort a sequence of n numbers. We
find the largest number, exchange it with the last
number in the sequence, and then recursively sort the
first n - 1 numbers using the same procedure. Assuming
it takes n computational steps to find the largest of n
numbers, the time complexity of exchange sort grows
quadratically, which as we have seen, is a bad growth
rate for a sorting algorithm.

The exchange sort partitions a problem of size n
into two smaller subproblems, one of size n - 1 , the
other of size 1. The merge sort, on the other hand, uses
the principle of balance: it partitions a problem of size
n into two subproblems each of size n/2. For large
values of n, the performance of the merge sort is
superior to that of the exchange sort.

Binary search is another familiar example of balance
and divide-and-conquer. Consider the problem of
finding a word in a dictionary of length n. If the dic-
tionary is unordered, then on the average we would
have to scan n/2 words to find the given word. If the
dictionary is sorted, however, then by using binary
search we can always find a given word in log2 n time
as follows. We open the dictionary in the middle. If the
word is there, we halt. Otherwise, we determine
whether the given word is before or after the word in
the middle of the dictionary, and recursively apply the
same process to the appropriate half of the dictionary.

It is rather surprising that unexpected results can be
produced by using as simple a method as divide-and-
conquer. For example, divide-and-conquer yields an
order n 2"81 algorithm to multiply two n x n matrices
and an order n algorithm to find the median of n
numbers.

Dynamic programming
A useful generalization of divide-and-conquer for

optimization problems is a method called dynamic
programming. Here we attempt to find an optimal
solution for a problem by finding optimal solutions
for a collection of smaller subproblems. In many
situations an efficient algorithm can be obtained by
systematically constructing a table of solutions to all
subproblems, starting with the smallest subproblems.

A simple example should illustrate the method.
Suppose we need to multiply together n matrices
Mtx M 2 x . . . X M. where matrix Mi has r~-a rows
and ri columns for 1_<iN n.

The order in which the matrices are multiplied
together can dramatically affect the total number of
scalar operations (the 'cost'). For example, suppose we

need to multiply together three matrices M 1, U 2 , and
M3 in which M1 is 100x 1, ME is 1 x 100 and M3 is
100 x 100. If we evaluate (M1 x ME) x M3 in the normal
fashion, we require 100 x 1 x 100+ 100 x 100 x 100=
1"01 x 106 operations. If we evaluate M1 x (M2 x M3),
we require only 1 x 100 x 100+ 100 x 1 x 100=20000
operations.

There are 1C:)
C(n + 1)= ~ ~- n3/2

possible orders in which to multiply a sequence of n + 1
matrices. [C(n) is the number of different ways in which
a sequence of n items can be fully parenthesized. These
numbers are called the Catalan numbers.] Thus trying
all possible orderings to find the one with minimum
cost is an exponential process. Dynamic programming,
however, provides a n n 3 method as follows.

Let m u be the minimum number of operations needed
to evaluate Mix M i + I x . . . X Mj for l < i < j < n . We
have

0, if i= j
mij = min (mik -~- mk + 1, j "[- ri- 1 rkr)), if j > i.

i<_k<j

(5)

Equation (5) finds the optimal way to evaluate
Mix Mi+t x ... x Mj by considering the costs of the

j - i possible products (Mix M i + l x . . . x Mk) X
(M k + l X Mk+ 2 X ... X Mj) .

The dynamic programming approach evaluates the
miss in order of increasing values of j - i . We first
compute m. for all i, then m~, i + 1, then m~, i + z and so on
until we determine ml., the optimal cost for the n-fold
product. Choosing this order of evaluation makes sure
the terms mik and mk+ 1, j are available when we evaluate
m u using equation (5). The optimal order to evaluate
the matrices can be determined by tracing backward
from ml. the values of k used in equation (5).

Data structures
One vitally important aspect of algorithm design is

the manner in which data is represented inside the
computer. The structures holding the data should
permit efficient access to elements when they are
needed. They should also permit easy insertion and
deletion of values when needed. Occasionally these
two requirements conflict in that a structure that per-
mits fast access may not permit fast modification. For
example, it is easy to find an element in a sorted list,
but it is not nearly as easy to add a new element. The
principle of balance is often useful in the design of data
structures.

Regardless of his specialty, every algorithm designer
ought to be familiar with fundamental data structures
such as arrays, queues, stacks, and lists (both linear
and linked). Hashing and binary trees are important
techniques for storing and retrieving data. Basic
techniques for representing trees and graphs should
also be part of the designer's repertoire. (For details

8 A L G O R I T H M S A N D C O M P U T A T I O N A L C O M P L E X I T Y

see Knuth, 1968, 1973; Aho, Hopcroft & Ullman,
1974.)

Sparse techniques
Space is often more precious in computing than time.

Today a computation requiring a billion computer
operations, even floating-point multiplications, is
possible but one requiring a billion words of memory
is not. For this reason, efficient representations for
'sparse' data are a subject of current research. To
illustrate one approach towards sparse data let us
consider some representations for the undirected
graph G in Fig. 1.

One representation for G is the binary adjacency
matrix in Table 2 whose ijth element is 1 if, and only if,
there is an edge from vertex i to vertexj. The adjacency
matrix permits easy access to and modification of
values but it always requires order n 2 space for an
n-vertex graph.

• ¢ - . ~

Table 2. Adjacency matrix
1 2 3 4 5 6

1 0 1 1 1 1 1
2 1 0 1 1 0 0
3 1 ! 0 0 0 0
4 1 1 0 0 0 0
5- 1 " 0 0 0 0 1
6 1 0 0 0 1 0

For large values of n, the adjacency matrix repre-
sentation becomes very space consuming. If we take
advantage of its symmetry, we can reduce the space
requirements by one-half. On the other hand, if the
graph is sparse (i.e. the number of edges is order n
rather than n2), then adjacency lists provide a much
more economical representation. Here we store in a
linked list for each vertex i only those vertices j such
that there is an edge between i and j as in Table 3. The
adjacency-lists representation requires order n, rather
than n z, space for a sparse graph.

Table 3. A~acency lists
Vertex Vertex

1 2 , 3 , 4 , 5 , 6 4 1,2
2 1 ,3 ,4 5 1,6
3 1,2 6 1,5

Depth first search
At the heart of several important algorithms dealing

with graphs is a simple efficient technique, called depth
first search, for systematically visiting the vertices and
edges of a graph G. A depth first search begins at some
vertex v. We then select an untraversed edge (v,w)
incident upon v. If w has not yet been visited, we move
to w and recursively continue the search at w. After
exhausting all edges incident upon w, we return to v
and recursively search the remaining untraversed edges
incident upon v. Fig. 2 shows a depth first search of the
graph of Fig. 1, beginning at vertex 1.

The depth first search partitions the edges of G into

two sets. The edges by which the vertices (the solid
edges in Fig. 2) are reached for the first time are called
tree edges because they form a spanning tree of G. The
remaining (dashed) edges link descendants to ancestors
and are called back edges. These tree and back edges
have important mathematical properties which are
useful in a number of fundamental graph algorithms,
particularly those dealing with connectivity. For
example, every cycle in the graph contains at least one
back edge.

Depth first search and adjacency lists have been used
to solve a variety of graph problems efficiently. One
notable application is an order n algorithm to deter-
mine whether an n-node graph is planar (Hopcroft &
Tarjan, 1974). For many years the best known algo-
rithm for this problem had been of time complexity n 3.

Unification of techniques

One of the important benefits of algorithm study is the
identification of classes of problems that can be solved
with essentially the same algorithmic techniques.
Consider, for example, the close relationship between
polynomial evaluation and the Fast Fourier Trans-
form.

Polynomial evaluation
An n - 1st degree polynomial

n - 1
p(x) = ~ aix i

i=0

can be evaluated at n points Co, Cl,...,C,-a with n z
scalar operations using Horner's rule n times.* On the
other hand, consider what happens when we apply
divide-and-conquer to this problem. For simplicity,
take n to be a power of two. Observe that p(c) is
p(x) mod (x -c) , i.e. the remainder of p(x) divided by
x - c . Thus we can evaluate p(x) at Co, C1,...,c,-1 by
dividing p(x) by X-Co, X - C l , . . . , x - c , _ a and deter-
mining the remainders.

* Horner 's rule evaluates p(x) as

{(...[(a,_ lx +a,-2)x +a,-a]x + ...)x +al}x +ao.

Fig. 1. Undirected graph G.

Fig. 2. Depth first search of G.

ALFRED V. AHO 9

Using a divide-and-conquer approach, we first
compute the products

and
p l (X)=(X- -Co) (X - -C l) ' " (X- -Cn /2 - 1) (6)

p2(X)=(X--C. /2) (X--C./2 + 1). . . (X--C n - 1)- (7)
We now compute rl(x)=p(x) mod pl(x) and r2(x)=
p(x) mod p2(x). The original problem has now been
transformed into two subproblems, each evaluating
an (n-1) /2 degree polynomial at n/2 points: rl(x) at
Co, CI,'" ",Cn/2- 1 and r2(x) at Cn/2, Cn/2 + 1," " , C n - 1"

When we apply the procedure recursively to the
subproblems, the overall time complexity of the pro-
cess is determined by the recurrence

k for n= 1
t(n) = 2t(n/2) + d(n) for n > 1 (8)

where k is a constant and d(n) is the time required to
divide two n - 1 s t degree polynomials. The solution
to equation (8) is bounded from above by d(n)log n.
Since polynomial division can be done in order
n logn scalar operations, evaluation of an n - 1 s t
degree polynomial at n points can be performed in
order n log 2 n scalar operations.

This approach to polynomial evaluation can also be
used to develop efficient algorithms for a number of
other problems such as polynomial interpolation,
integer multiplication, and Fourier transform evalua-
tion.

The Fast Fourier Transform
The discrete Fourier transform on n points

ao, al , . . . ,a , -1 is the sequence of values bo,bl , . . . ,b,-1
where

n-1
bj = 2 ak~Jk

k=O

and co is a principal nth root of unity (e.g. e 2ni/n where
i =] / / - 1). We see that computing the discrete Fourier
transform is equivalent to evaluating the polynomial

n-1
p(x) = ~ aix i

i=0

at the roots of unity co°,e) 1, ...,co"-1
If we use the polynomial evaluation scheme given

above, we immediately have a Fourier transform
algorithm that takes n logZn scalar operations. If we
notice that oJ"/2=- 1, however, we can do more. We
can rearrange the order in which the output values are
to be produced to obtain product polynomials (6) and
(7) that have no cross product terms, i.e. they are all of
the form X2~--O) 2t for some integers s and t.* The

advantage of this is that a division by a polynomial of
this form can be done in order n time, so in equation
(8) d(n)= cn for some constant c. The solution to equa-
tion (8) then becomes order n log2 n. These ideas form
the basis of the celebrated Fast Fourier Transform
(Cooley & Tukey, 1965). Couching these ideas in these
terms shows that the same underlying concepts can be
applied to a large number of related problems.

Reducibility
The notion of reducibility carries the concept of algo-
rithm unification further. A problem Px is said to be
linearly reducible to a problem P2 if an algorithm for
P1 can be constructed out of one for P2 such that the
time to perform the reduction and solve P1 is linearly
related to the time to solve P2. An analogous defini-
tion holds for polynomial time reducibility.

For example, matrix multiplication and matrix
inversion are linearly reducible to each other. Similarly,
n x n Boolean matrix multiplication, computing the
transitive closure of an n-vertex directed graph, and
computing the transitive reduction of an n-vertex
directed graph are all linearly reducible to one another~

Reducibility is important because it allows results
for one problem to be transferred to all problems that
are reducible to it. Any improvements to one algorithm
would impart improvements to algorithms solving
other problems in the same class. Polynomial time
reducibility is particularly important both mathe-
matically and computationally. To appreciate the full
significance of polynomial time reducibility we need to
become acquainted with 'nondeterministic computers'
and 'NP-complete problems'. We use the satisfiability
problem from logic to introduce these two concepts.

The satisfiability problem
Suppose we are given a Boolean expression E having

logical variables, a, b, c,... and we are asked, 'Is there an
assignment of the logical variables true and false to the
variables that makes E true?' This problem is called
the 'satisfiability problem.' One way to solve this prob-
lem is to systematically generate all possible assign-
ments of logical values to the variables of E and
evaluate E on each.

We can visualize this process as one of generating a
solution tree as shown in Fig. 3. From the root of the
tree emanate two branches corresponding to the two
possible values of variable a. Similarly, from each of the
two descendants of the root emanate two branches
corresponding to the two possible values of variable b,
and so on. Once we have generated a complete assign-
ment, we evaluate E with that assignment. This

* Choosing cj=brevtj) gives the desired result, where if

[dk- l dk-2...do] is the binary representation for j i.e. j = i di2i '

rev(j) is the integer whose binary representation is [dodl ...dk-1].

i G*, the transitive closure of directed graph G, is a graph with the
same vertices as G and with an edge from vertex i to vertex i if, and
only if, G has a path from i toj. G R, the wansitive reduction of G, is a
directed graph with the same vertices as G and with the fewest
number of edges of any graph having the same transitive closure as G.

10 ALGORITHMS AND COMPUTATIONAL COMPLEXITY

evaluation is represented by the path leading up to
each leaf.

We designate those leaves at which it is discovered
E is true 'accepting'. Thus determining whether E is
satisfiable is equivalent to determining whether the
solution tree has at least one accepting leaf.

One way to determine whether the tree has an
accepting leaf is to systematically visit each node of this
tree using backtrack programming. Such an approach,
however, can be quite time consuming. We can evaluate
E on any assignment using a number of computational
steps linearly proportional to the length of E. Thus the
length of the path from the root to a leaf is a linear
function of the length of E. The number of leaves,
however, grows as 2", where n is the number of variables
in E. This growth rate is so explosive that with n as
low as 50, backtrack programming is hopeless, even on
a machine that can visit one vertex per nanosecond.

Nondeterministic computers
To study problems such as satisfiability, computer

scientists employ a fictional machine called a 'non-
deterministic' computer. In addition to being able to
perform the usual primitive operations of an ordinary
(or 'deterministic') computer, a nondeterministic com-
puter has the remarkable capability of being able to
split itself, in one step, into several identical copies.
Furthermore, each copy has the ability to replicate
itself in a similar manner.

We can determine whether there is a solution to the
satisfiability problem with a nondeterministic com-
puter as follows. The nondeterministic computer starts
off at the root of the solution tree. In one step it re-
plicates itself in two, creating one copy to handle the
case a--true, the other to handle a =false.

In the next step each copy splits in two, one copy
handling b=true, the other b=false. The copies
continue operating this way, tracing out the solution
tree in parallel, creating new copies to handle each two-
way branch. If any copy reaches an accepting leaf, then
we know there is a solution to the satisfiability problem.

The time taken by this machine is defined to be the

c = l ~ ~ -

c = - : ~-

b = l

a = 0 ~. 7. --'

c = l - ~. -

c = u & -_ -

Fig. 3. Solution tree.

length of a shortest path from the root to an accepting
leaf. We see that such a path is of length linear in the
size of E, so that the nondeterministic computer can
determine whether there is a solution to the satisfiability
problem in time linear in the size of E.

We emphasize that a nondeterministic computer is
a mathematical abstraction. No real parallel computer
model discussed in the literature is capable of coping
with the exponential growth needed to implement a
nondeterministic computer. The only known way to
implement a nondeterministic machine on a real
computer is by simulation. This is essentially what
backtrack programming does.

The classes P and NP
Why study nondeterministic computers ? The answer

lies in the unity they bring to a large class of important
but seemingly disparate problems that arise in many
fields of science, engineering and mathematics.

We use NP to denote the class of problems that can
be solved on a nondeterministic computer in time
polynomial in the size of the problem. (Size here is the
number of bits, with numbers in binary notation.) We
use P to denote the class of problems that can be
solved in polynomial time on a real (deterministic)
computer. Obviously P is a subset of NP, since a real
computer is a special case of a nondeterministic one.
No one, however, has yet been able to prove whether
P= NP or whether P is a proper subset of NP. The
answer to this question, as we shall see, would have
major implications for the theory of computing.

Certain problems in NP are as hard as any in P. We
call these problems 'NP-complete'. Formally, a prob-
lem is NP-complete if it is in NP and every other prob-
lem in NP can be polynomially reduced to it.

Cook (1971) was the first to show that NP-complete
problems exist; in particular, he showed that the
satisfiability problem is NP-complete. Shortly there-
after, Karp (1972), and later many others, showed that
a large number of important and commonly occurring
problems are also NP-complete. These problems arise
in a variety of disciplines: vehicle routing, airplane
loading, job-shop scheduling, chemical-compound
recognition, optimizing compilers, integer linear pro-
gramming, and many others.

Here are five well-known examples of NP-complete
problems. (1) Traveling salesman. Given n cities and an
integer k, is there a circuit that passes through each city
once having a total length less than k? (2) Subgraph
isomorphism. Given two graphs G1 and G2, is G1 iso-
morphic to a subgraph of G2 ? (3) Partition. Given a set
of integers, is there a way of partitioning the set into two
subsets whose sums are equal ? (4) Graph coloring. Given
a graph G and an integer k, can the vertices of G be
colored with k colors so that no two adjacent vertices
(i.e. vertices connected by an edge) have the same
color. (5) Clique. Given a graph G and an integer k,
does G contain a k-clique (a complete subgraph on k
vertices)?

ALFRED V. AHO 11

Implications of NP-completeness
All NP-complete problems are polynomially reduc-

ible to one another. Thus, to show a problem is NP-
complete all we need to do is show that it is in NP and
that a known NP-complete problem is polynomially
reducible to it.

The implication of knowing a problem is NP-
complete is that if a polynomial time-bounded algo-
rithm (on a real computer) existed for that problem,
then there would be a polynomial algorithm for every
NP-complete problem. Although many researchers in
a number of different fields have independently studied
a variety of NP-complete problems, to date no one has
found a polynomial algorithm for any NP-complete
problem. As a consequence it is generally felt that there
are no polynomial algorithms for NP-complete prob-
lems, although no one has yet been able to prove this to
be the case. The question of whether there exists a
polynomial algorithm for any NP-complete problem
has become known as the ' P = N P problem'* and is
considered the major unsolved question in theory of
computational complexity.

The practical consequences of discovering a problem
to be NP-complete have not been fully resolved at
present. If indeed P 4 = NP, no general algorithm can be
given which will solve all instances of that problem in
less than exponential time. Nevertheless, it may be
possible that for the distribution of the instances of the
problem encountered in a given application, an algo-
rithm whose expected time complexity is less than
exponential can be found. However, the expected time
complexity of NP-complete problems is an area of
active interest that is not yet well understood.

Another possibility is that in practice we may have a
restricted form of an NP-complete problem. Here we
might be able to find an algorithm whose worst-case
behavior is less than exponential. Unfortunately, this
approach may not always be successful because even
rather restricted forms of some NP-complete problems
are also NP-complete. For example, the satisfiability
problem is NP-complete even if we restrict our atten-
tion to Boolean expressions in product-of-sums form
with at most three variables per sum [i.e. to expressions
of the form (a + b + c) (2 + c + d) Here, concatenation
denotes logical 'and', + logical 'or' and - comple-
mentation.] The colorability problem is NP-complete
even if the graph is planar and has vertices of degree at
most 4.

One approach to solving an NP-complete problem
is to find an algorithm whose exponential growth is
confined to some parameter of the problem whose
size is small in a given application. For example,
generation of an optimal compiler code for expressions
with common subexpressions is NP-complete even for
one-register computers. However, there is an algorithm

* If there exists a polynomial time algorithm for one NP-complete
problem X, then every problem in NP could be solved in polynomial
time by polynomially reducing every problem to X. Hence, P would
equal NP.

to generate an optimal code on a one register computer
whose time complexity is order n2 c where n is the size
of the expressions and c is the number of common
subexpressions (Aho, Johnson & Ullman, 1977). In
typical expressions the number of common subexpres-
sions is small so this may be a reasonable way to
proceed.

Another approach to solving an NP-complete prob-
lem is to use a heuristic technique that gives a good but
not necessarily exact solution. [See, for example, the
work of Lin & Kernighan (1973) on the traveling-
salesman problem.] For certain classes of problems
performance guarantees can be placed on heuristic
solutions. For example, consider the problem of 'bin-
packing', storing a finite sequence of real numbers
between 0 and 1 into the fewest possible number of
unit-capacity bins. It has been shown that the heuristic
of sorting the sequence into decreasing order and then
packing the bins in a first-fit fashion yields a solution
that is never worse than 11/9 optimal (Johnson,
Demers, Ullman, Garey & Graham, 1974).

Unfortunately, some NP-complete problems seem
resistant even to heuristic solutions. It has been shown,
for example, that if there were a polynomial time-
bounded heuristic that always came within a factor of
two of determining the chromatic number of a graph,*
then P = NP (Garey & Johnson, 1976). Thus it is doubt-
ful that even a good heuristic can be found for graph
coloring.

In some cases two seemingly similar problems may
have rather dissimilar time complexities. For example,
the minimal equivalent of a directed graph G is a
smallest subgraph of G that contains the same path
information as G.t The transitive reduction of G is a
smallest graph (not necessarily a subgraph of G) that
has the same path information as G. Finding a minimal
equivalent subgraph of G is NP-complete (Sahni, 1974).
Finding a transitive reduction can be done in less than
n 3 time. This remark shows how important the precise
statement of the problem can be in certain cases.

Intractable problems
It is suspected, but not certain, that every NP-

complete problem requires exponential time in the
worst case. There are certain classes of problems for
which this is provably the case. Typical of these results
is the doubly exponential time complexity of any
decision procedure for Presburger arithmetic, a partic-
ularly simple system of logic involving only addition
and equality. Let s be a first-order predicate calculus
statement using the symbols + and =. For example, s
might be V x :1 y (x +y=y) . There is a theorem that
states that there is a positive constant c and an integer
no such that for every algorithm to decide whether a
first-order statement about Presburger arithmetic is

* The chromatic number is the least k such that the graph is
k-colorable.

t If G' is a minimal equivalent subgraph, then there is a path from
vertex i to vertex j in G' if, and only if, there is a path from i t o j in G.

12 ALGORITHMS AND COMPUTATIONAL COMPLEXITY

true, and for every n > no, there is a statement of length
n on which the algorithm takes more than 22c" time
(Fischer & Rabin, 1974).

This result, and others like it, show that there are
theorems whose proofs (in formal sense) are so long
that they cannot be found or written down with any
reasonable amount of effort. The scope of automatic
theorem proving becomes much less ambitious in the
light of these results. Exactly which theorems have
proofs of reasonable length, however, is still a subject of
investigation.

Most discouraging are the results that show that
certain problems have no algorithms whatsoever to
solve them. Perhaps the most famous of these 'un-
decidable' problems is the halting problem for Turing
machines which, recast in the context of programming,
reads as follows. There is no general algorithm which,
given any program P and any input x, can always
determine whether P halts on input x. This result
becomes even more remarkable when we realize it was
proved by Turing (1936) a decade before the first
electronic computers were built.

The existence of intractable and unsolvable problems
indicates that there are fundamental limits as to which
problems can be solved by computers.

Conclusions

This article has discussed various aspects of algorithms
and computational complexity. We have seen that the
time complexity of an algorithm determines the
ultimate size of problems that can be solved with it.
We have discussed some general techniques that can
be used to try to design efficient algorithms for a given
problem. We have shown that there exist classes of
problems for which all attempts at finding general
efficient algorithms must fail.

The moral of this paper is, before writing a pro-
gram to solve a problem, examine the computational

complexity of the underlying algorithm. If the program
uses an algorithm whose time complexity matches the
inherent complexity of the problem, then fruitless
searching for nonexistent better algorithms can be
avoided. On the other hand, if the program uses an
algorithm whose time complexity is functionally
greater than is required, then order-of-magnitude
improvements in program performance can be achieved
by substituting the proper algorithm.

References
AHO, A. V., HOPCROFT, J. E. & ULLMAN, J. D. (1974). The

Design and Analysis of Computer Algorithms. Reading,
Mass. : Addison-Wesley.

AHO, A. V., JOHNSON, S. C. & ULLMAN, J. D. (1977). J. Assoc.
Comput. Mach. 23, to be published.

COOK, S. A. (1971). Proc. Third Annual Assoc. for Comput.
Mach. Symp. on Theory o['Computing, pp. 151-158.

COOLEY, J. M. & TUKEV, J. W. (1965). Math. Comput. 19,
297-301.

FISCHER, M. J. & RABIN, M. O. (1974). ComplexiO'of Com-
putation, edited by R. M. KARP, 7, 27--42. SIAM-AMS
Proc.

GAREY, M. R. & JOHNSON, D. S. (1976). J. Assoc. Comput.
Mach. 23, 43-49.

HOPCROFT, J. E. & TARJAN, R. E. (1974). Commun. Assoc.
Comput. Mach. 21,549-568.

JOHNSON, D. S., DEMERS, A., ULLMAN, J. D., GAREY, M. R. &
GRAHAM, R. L. (1974). SlAM J. Comput. 3, 299-326.

KARP, R. M. (1972). Complexity of Computer Computations,
edited by R. MILLER & J. THATCHER, pp. 85-104. New
York : Plenum Press.

KNUTH, D. E. (1968). Fundamental Algorithms. Reading,
Mass. : Addison-Wesley.

KNU'rH, D. E. (1973). Sorting and Searching. Reading, Mass. :
Addison-Wesley.

LIN, S. & KERNIGHAN, B. W. (1973). Oper. Res. 21,498-516.
SAHNI, S. K. (1974). SIAM J. Comput. 3, 262-279.
TURING, A. M. (1936). Proc. Lond. Math. Soc. Ser. 2, 42,

230-265.

